I am trying to write a df to a csv from a loop, each line represents a df, but I am finding some difficulties once the headers are not equal for all dfs, some of them have values for all dates and others no.
I'm trying to write a data frame to csv using a loop. I'm having some difficulties doing the same once the headers of the dataframes start changing for example some of the values have dates and others dont.
I'm using a function similar to this one for writing :
[code]
def write_csv():
    for name, df in data.items():
        df.to_csv(meal+'mydf.csv', mode='a')
        [/code]
and it creates a csv for each meal (lunch an dinner) each df is similar to this:
Name    Meal    22-03-18    23-03-18    25-03-18        
Peter   Lunch   12          10          9
or:
Name    Meal    22-03-18    23-03-18    25-03-18        
Peter   Dinner  12          10          9
I have previously tried to use pandas concatenate, but I simply cant find a way to implement this in the function.
My goal is to have the headers with all the dates independent of the dataframes appended to the csv.
Actual output:
Name    Meal    22-03-18    23-03-18    25-03-18        
Peter   Lunch   12          10          9       
Mathew  Lunch   12          11          11         10     9
Ruth    Lunch   9           9           8          9    
Anna    Lunch   10          12          11         13     10
output with headers:
Name    Meal    22-03-18    23-03-18    25-03-18           
Peter   Lunch   12          10          9       
Name    Meal    21-03-18    22-03-18    23-03-18    24-03-18    25-03-18
Mathew  Lunch   12          11          11          10          9
Name    Meal    21-03-18    22-03-18    24-03-18    25-03-18    
Ruth    Lunch   9           9           8           9   
Name    Meal    21-03-18    22-03-18    23-03-18    24-03-18    25-03-18
Anna    Lunch   10          12          11          13          10
Output desired:
Name    Meal    21-03-18    22-03-18    23-03-18    24-03-18    25-03-18
Peter   Lunch   12          10          9   
Mathew  Lunch               12          11          11           10
Ruth    Lunch   9           9           8           9
Anna    Lunch   10          12          11          13           10