In order to detect message-based phishing attacks programmatically, we can follow the following approaches:
1. URL Analysis with Google Safe Browsing
We can use Google Safe Browsing API to check if URLs are malicious.
const fetch = require('node-fetch');
async function checkURL(url) {
    const apiKey = 'YOUR_API_KEY';
    const apiURL = `https://safebrowsing.googleapis.com/v4/threatMatches:find?key=${apiKey}`;
    const body = {
        client: {
            clientId: "your-app",
            clientVersion: "1.0"
        },
        threatInfo: {
            threatTypes: ["MALWARE", "SOCIAL_ENGINEERING"],
            platformTypes: ["ANY_PLATFORM"],
            threatEntryTypes: ["URL"],
            threatEntries: [{ url: url }]
        }
    };
    const response = await fetch(apiURL, {
        method: 'POST',
        body: JSON.stringify(body),
        headers: { 'Content-Type': 'application/json' }
    });
    const data = await response.json();
    return data.matches ? true : false; // true if malicious
}
checkURL("http://suspicious-url.com").then(isMalicious => {
    if (isMalicious) console.log("Phishing link detected!");
    else console.log("URL is safe.");
});
2. Text Analysis with NLP
We can use simple keyword-based detection to catch common phishing terms.
function containsPhishingKeywords(message) {
    const phishingKeywords = ["urgent", "verify your account", "limited time"];
    return phishingKeywords.some(keyword => message.toLowerCase().includes(keyword));
}
const message = "Please verify your account urgently to avoid suspension.";
if (containsPhishingKeywords(message)) {
    console.log("Potential phishing message detected!");
}
3. Machine Learning with TensorFlow.js
We can train models on phishing data using features like link count, attachment presence, and urgency.
This is a basic setup for checking the likelihood of phishing. For full model training, you would need a pre-labeled dataset.
const tf = require('@tensorflow/tfjs-node');
async function classifyMessage(message) {
    const model = await tf.loadLayersModel('path/to/model.json');
    const inputTensor = tf.tensor([message.length, (message.match(/\./g) || []).length]); // Example features: message length, periods
    const prediction = model.predict(inputTensor.expandDims(0));
    const isPhishing = prediction.dataSync()[0] > 0.5; // threshold example
    return isPhishing;
}
classifyMessage("Suspicious message text").then(result => {
    console.log(result ? "Phishing detected!" : "Message seems safe.");
});
4. Attachment Scanning
We can block specific file types to prevent malicious attachment phishing.
const blockedExtensions = ['.exe', '.js', '.vbs'];
function isSuspiciousAttachment(filename) {
    return blockedExtensions.some(ext => filename.endsWith(ext));
}
const filename = 'suspicious.js';
if (isSuspiciousAttachment(filename)) {
    console.log("Potentially dangerous attachment detected!");
}
5. Behavioral Analysis
We can set up rate limiting based on IP addresses or user activity.
const rateLimit = {};
const MAX_REQUESTS = 5; // allowed requests per minute
function rateLimitCheck(userId) {
    if (!rateLimit[userId]) {
        rateLimit[userId] = { count: 1, timestamp: Date.now() };
    } else {
        const timeElapsed = Date.now() - rateLimit[userId].timestamp;
        if (timeElapsed < 60000) {
            rateLimit[userId].count++;
        } else {
            rateLimit[userId] = { count: 1, timestamp: Date.now() };
        }
    }
    if (rateLimit[userId].count > MAX_REQUESTS) {
        console.log("Unusual behavior detected! Possible phishing attempt.");
        return true;
    }
    return false;
}
// Usage
if (rateLimitCheck("user123")) {
    console.log("Warning: Too many messages from user123.");
}
Related post Secure messaging systems