Hi Sarada,
 I understand you are having problems with the empty data. so you can try this function to remove your empty value rows
raw_data = {'first_name': ['Jason', np.nan, 'Tina', 'Jake', 'Amy'], 
        'last_name': ['Miller', np.nan, 'Ali', 'Milner', 'Cooze'], 
        'age': [42, np.nan, 36, 24, 73], 
        'sex': ['m', np.nan, 'f', 'm', 'f'], 
        'preTestScore': [4, np.nan, np.nan, 2, 3],
        'postTestScore': [25, np.nan, np.nan, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age', 'sex', 'preTestScore', 'postTestScore'])
df
df_no_missing = df.dropna()
df_no_missing
I hope this will help you out.